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Department of Mathematics, Tsing Hua University, Taiwan, China
(Comm. by Zyoiti SUETUNA, M.J.A., Feb. 12, 1966)

1. Introduction. In a recent paper [17], Z. Opial proved the

following interesting integral inequality:
Theorem. Let y(x) be of class C' on 0<x<<h, and satisfy
¥(0)=y(h)=0, y(x)>0 on (0,h). Then
(1) vy do< (' yan.
0 4 Jo
The constant h/4 is best possible.

C. Olech [2] showed that (1) is valid for any function which is
absolutely continuous on [0, 2], and satisfies the boundary conditions
Y(0)=y(h)=0, and Olech’s proof of (1) was much simpler than that
of Opial. P. R. Beesack [3] gave an even simpler proof of (1) under
the hypotheses of Olech, and he also gave more general inequalities
of the same type. Later, many simpler proofs were given by N.
Levinson [4], C. L. Mallows [5], and R, N. Pederson [6].

By Mallows’ method of the proof of (1) we shall give a simple
proof of some results of Beesack [3], and show how this method can
be used to yield generalization of Opial’s and Beesack’s inequalities.

b b
2. On the inequality 2§ lyy' | de< K S py"dx.

Let us define z(x)zgx{y’(t) |dt, a<az<X. Then |y(x)| <z(x)
for a<a2<X, and we havz
2r[ Y@y (@) | dm<2gxzz’dx=z2(X).
Now by the deﬁnit;on of z(x) and Scflwarz’s inequality
#0)=({"1v(@) | ds) < gjp‘l(x)dxgjpy”dx.
There is equality only if y:AS:p—l(t)dt, A being a constant. Similarly,

define 2(z)= — §°| y'(t)| dt, X<w<b. Then |y(x)|<—z(x) for X<w<b,
and
b b b 2 b b
25 |yy’|dw<2§ —zz’dx:zz(X):(——g |y'[dx> <S p“‘dxg py*dex,
p.4 P-4 5 p.q .4 p. 4
There is equality only if y:BS p~Y(t)dt, with B constant. Now, we
take X such that

(2) K=|"p()o={ p-@as,
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then we get
Theorem 1. Let p(x) be a positive and continuous function

on a finite or inmfinite interval a<x<b, such that pr‘l(x)dac<oo
and let y(x) be an absolutely continuous function o;?, (a, b) with
y(a) = y(b)=0. Then
2Sb| yy' | dx<Kpry'2dx,
where K 1s defined by (;). Equalityaholds only f
y(x):AS”p—l(t)dt (a<w< X), y(x):Bpr“l(t)dt (X<w<b).

Opial’s ainequality (1) is a special case ofz Theorem 1 that a=0,
b=h, and p(x)=1.

3. On the inequality 2S:q Ly | dx<5:p“de:pqy’2dx.

Lemma 1. Let p(x) be a bounded, positive and non-increasing
function defined on a<x<b. Let y(x) be absolutely continuous on
a<e<b, with y(a)=0. Then

(3) S:p lyy' | dx<1%—TaS:py’2dx.
Proof. Define z(m):S: Vﬁ(f(_t)ly'(t)ldt (a<z<b). Then
v, 1 v _2(x)
= dt| <—=—\V/ t) | dt =—22L
o) =[] <~ Ve veld="2

for a<x<b, so that
b b b
2['p 1y | do<a| wda—2@)=(| V2@ lv(@) | dx)
By Schwarz’s inequality,
b R 2 b b b
([v2@ 1y do) < dol par=(o—a)| pyia.
There is equality only it p=constant and y=Ax with A constant.
Lemma 2. Let p(x) be a bounded, positive and non-decreasing
function defined on a<x<b, and let y(x) be an absolutely conti-
nuous function on a<x<b, with y(b)=0. Then the tnequality (3)
holds. Moreover, there is equality only tf p=constant, y=DB(x—D),
with B constant.

Proof. Define z(x):»—SbV 2() |y/(6)|dt (a<w<b). Then

2
.

ly(m)|<—1—/—z—% for a<x<b, so that
2]'pluy | do< 2 swda—e@)=(| V2@ |v/@) | do ) .

By Schwarz’s inequality (8) follows immediately. There is equality
only if p=constant, y=B(x—b) with B constant.
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From Lemma 1 and Lemma 2, follows immediately

Theorem 2, Let p(x) be a bounded, positive and monotonic
Sunction defined on a<x<b, and let y(x) be an absolutely continuous
Junction on a<x<<b, with y(a)=y(b)=0. Then the inequality (3)
holds. If p=constant, then the constant 1/2 can be replaced by
1/4, and then Opial’s inequality (1) is obtained by lettmg a=0
and b=h.

We shall now prove a generalization of Beesack’s theorem.

Theorem 3. Let p(x) be positive on a<a<X, with Sxp“ldx< oo,

and let q(x) be bounded, positive and mon-increasing on a<r<X;
y(x) be any function which is absolutely continuous on a<zr<X,
with y(a)=0. Then

pq X p.q
(4) Zg QIyy’ldx<§ p“ldxg pay"da.
There 1s equality only 1f q = constant, y:ASxp“l(t)dt or y=0.

Proof, Define z(x):le/ q(t) |¥'(t)|dt. Then 2'(x)=1"q(x) |y’ (x)|
for a<ax<X. Since ¢(x) is non-increasing on a<x<X, we have

@) <[ 1@ < Va0 170 d = s
Hence

2qu | dx<2szz'dx:z2(X)=(f1/W')‘ @) | dt>2.

By Schwarz’s inequality, we get (4). There is equality only if ¢=
constant or y=0.
Similarly, we have

b
Theorem 3’, Let p(x) be positive on X<x<b, with g pidr< oo,
X

and let q(x) be bounded, positive and mnon-decreasing on X<x<b;
y(x) be any function which ts absolutely continuous on X<x<b,
with y(b)=0. Then

b b b
(5) 2qu lyy'| dw<gxp“‘dngpqy’2dw.
Moreover, there is equality only if q=constant or y=0,

Theorem 1 is a special case of the combination of Theorem 3 and
Theorem 3’, taking g=constant.

4, On the inequality (m+n)§b |y’"y'”|dx<n(b_a)m§b|yr g,

Lemma 3. Let y(x) be absolutely continuous on a<zx<X, with
y(a)=0. Then

p.q X
(6) @+ [y de<X—ay| |y @rda, n>1,
Moreover, equality holds only tf y=A(x—a), with A constant.
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" Proof. Define z(ac):r[y’(t)ldt. Then |y(x) | <z(x) for a<er < X,
and we have
(n+ 1)8 Wy | de<(n+ 1)sznz'dm:zn+l(X):<r @) dt)”“.
By Holder’s inequality, (6) follows immediately., There is equality
only if y=A(x—a), with A constant.
Lemma 4. Let y(x) be an absolutely continuous function on
a<x< X, with y(b)=0, then
(1 @] ey 1 de<o-X[ 1y e, 01,
X X
Moreover, equality holds only 1f y=B(x—>b).
Proof. Define z(cc):—gbly’(t) |dé. Then #(x)=|y'(x)| for
X<x<b, and |y(x)| <—=z(x). Hence
b b b n+1
D[ Loy | o<t 1) (—arzda=(—a@Oy=({ v lat)".
p.q X X

By Holder’s inequality, (7) follows immediately.
Take X=(a+b)/2 in Lemma 3 and Lemma 4, then we have

Theorem 4. Let y(x) be an absolutely continuous function on
a<a<db, with y(a)=y(®)=0. Then
b
(8) 2+ D |y |de<b—or| |y e, n>1.
We note that Opial’s inequality (1) is the special case with n=1,

a=0, and b=h.
Corollarly. Let y(x) be as in Theorem 4, and let P(y)=

éak?/(x)k, with a, >0, k=1,2, ---n. Then
k=1
b ’ 2 b b—a ’
(9) |, | Pw@y dosy 2] (P 1y e,
Example. Let y(z)=x(a—x), with 0<a<1/2, and let P(y)=

i}y"(x). Then the relation (9) becomes (@—1)(2+32) < log « in the
k=1 2x(x+1)

interval (1, o).
Lemma 5. Let y(x) be an absolutely continuous function on
e<x<X, with y(a)=0, then

(10) 0| 1y | de<nX —a)" |y P, =1,

Proof. Define z(x):gx|y’(t) "d¢. Then 2'(x)=|y(x)[* for
a<x<X, and by Holder’s iriequality
@ < @ ae<((Tat) ([ 1rae) " <@—am ey,
Hence
(n+ 1)gx| w' | do <(n+ 1)SX(X—a)‘"—”/" 2 2 de
e CULSCe QI
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By Holder’s inequality, (10) follows immediately.
Lemma 6. If y(x) is absolutely continuous on X<a<b, with
y(6)=0, then

an @+ wyrlde<np—X)( |y ["vde, w1,
. X p.q

Proof. Define z(x):—gb |y/(t)[*dt. Then 2(@)=|y'(x)|* for
X<2x<b, and then ’
@) | <\ 1y@) | de<®—X)mim(— gy,
Hence ”
(n+ 1)S" lyy'™ | de<(n+ 1)5" (b— X )*=0I%( — ) ngtdg;
* :n(b—~X)‘"“”/"(iz(X))(“'“"”.
Now,

sy ) ()

b
==X |y(@) e,

Therefore (11) follows immediately.
If we take X=(a+b)/2 in Lemma 5 and Lemma 6, then we
have the following

Theorem 5. If y(x) is absolutely continuous on a<x<<b, with
y(a@)=y(b)=0. Then

b — b
(12) |l 1am< S0 |y o, w1,

We observe that Opial’s inequality (1) is a special case obtained
by taking n=1, a=0, and b=h.

In order to generalize Theorems 4 and 5 we prove the following
lemmas.

Lemma 7. If y(x) is absolutely continuous on a<x<X, with
y(a@)=0. Then

(13) (m+n>§x vy | de<n(X—a) | | y/(@) [, m, w1,

Proof. Define z(x)zgz |y'(t)|"dt. Then 2'(x)=|y'(x)|* for
a<2<X, and then
£7 , ] (n+1)/n £ , 1n
@) <[ Tv@iae<([a)" (v ra) " <X-ay-sin@ye.
Hence
(m_]_,n)sx | ymyln | dx<(m_*_n)SX(X_a)m(n—l)lnzm/nzldx

:/n(X,_a)m(ﬂ—l)ln(z(X))(m+n)/n.
Thus (13) follows immediately.
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Lemma 8. If y(x) is absolutely continuous on X<ax<b, with
y(b)=0. Then

(14) <m+n>§b ea dx<n<b—X>m§b Y rde, m, w1
pe X

Proof. Define #(x)— —Sb |y/(£) |"dt. Then 2/(&)=|y'(x) |" for X<
x<b, and ’
v@)| <[ 1y © [at< o3~y
Hence ’
(mtw)| | do<(me+m)|| O— Xy (—gyrada

:,n/(b_X)m(n—l)/n(_z(X))(m-l-’n)/n.
Thus (14) follows immediately.
If we take X=(a+b)/2 in Lemma 7 and Lemma 8, we have
Theorem 6. If y(») is absolutely continuous on a<x<b, with
y(@)=y(b)=0, then

m (b
orrides (VSO v e, w1,
a m @

Opial’s inequality (1) is a special case that m=n=1, a=0, and
b=h.
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