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    1. Introduction. In a recent paper [1], Z. Opial proved the 
following interesting integral inequality: 

   Theorem. Let y(x) be o f class C' on 0 < x < h, and satisfy 
y(O)=y(h)=0, y(x)>0 on (0, h). Then 

(1) h yy' dx < h hy12dx.                      0 40 
The constant h/4 is best possible. 
   C. Olech [2] showed that (1) is valid for any function which is 

absolutely continuous on [0, h], and satisfies the boundary conditions 
y(0) = y(h) = 0, and Olech's proof of (1) was much simpler than that 
of Opial. P. R. Beesack [3] gave an even simpler proof of (1) under 
the hypotheses of Olech, and he also gave more general inequalities 
of the same type. Later, many simpler proofs were given by N. 
Levinson [4], C. L. Mallows [5], and R. N. Pederson [6]. 
   By Mallows' method of the proof of (1) we shall give a simple 
proof of some results of Beesack [3], and show how this method can 
be used to yield generalization of Opial's and Beesack's inequalities. 

                                     b b 

   2. On the inequality 2 I yy' I dx < K py12dx. 
                                                  a a 

x 

   Let us define z(x) = y'(t) I dt, a < x < X. Then I y(x) I <z(x) 

a for a < x < X, and we have 

            2'I y(x)y'(x) I dx<2 zz'dx=z2(X). 
                               a a 

Now by the definition of z(x) and Schwarz's inequality 
                           X 2 1 S 

         z2(X)= I y'(x) I dx < p_1(x)dx py12dx. 
                                   a a a 

x 

There is equality only if y=A pr1(t)dt, A being a constant. Similarly, 
a b 

define z(x) _ - y'(t) I dt, X < x < b. Then I y(x) I < -z(x) for X < x < b, 

x and 
     b b b 2 b b 

 2 I yy' I dx < 2 _ zz'dx = z2(X) _ _ I y' I dx < p-1dx py12dx, 
    g g ~ g g 

b 

There is equality only if y=B p~1(t)dt, with B constant. Now, we 

x take X such that 
                        X b 

(2) K= p~1(x)dx= p_1(x)dx, 
                                            a %
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then we get 
   Theorem 1. Let p(x) be a positive and continuous function 

b on a finite or infinite interval a< x< b, such that p~'(x)dx< 

a and let y(x) be an absolutely continuous function on (a, b) with 

y(a) = y(b)=O. Then 
                                b b 

                 2 I yy' I dx < K py12dx, 
                                          a a 

where K is defined by (2). Equality holds only if 
                  x b 

  y(x) = A p_1(t)dt (a x < X), y(x) =B p~'(t)dt (X< x < b). 
                   a x 

   Opial's inequality (1) is a special case of Theorem 1 that a= 0, 
b = h, and p(x) =1. 

                                       b b b 

   3. On the inequality 2 q I yy' dx < p_1dx pgy12dx. 
                                                   a a a 

   Lemma 1. Let p(x) be a bounded, positive and non-increasing 

function defined on a < x < b. Let y(x) be absolutely continuous on 
a x < b, with y(a) = 0. Then 

 3 b y yy' I dx < b- a bpy12dx 
                     a 2 a 

   Proof. Define z(x) = x 1 I y'(t) I dt (a < x < b). Then 
                  al/p(t) 

     

I y(x) x I = xy'Ot dt < 1i/p(t) xI y'(t) I dt = z(x)             a 1/p(x) a i/p(x) 

for a < x < b, so that 

      2 bp yy' I dx<2 6zz'dx=z2(b)= b1/p(x) y'(x) dx 2.                         I I 
                 a a a 

By Schwarz's inequality, 
         b

1/ x y'(x) dx 2 < bdx b py12dx = (b - a) b py12dx.        p()lI 
                 a a a a 

There is equality only it p = constant and y = Ax with A constant. 
   Lemma 2. Let p(x) be a bounded, positive and non-decreasing 

function defined on a < x < b, and let y(x) be an absolutely conti-
nuous function on a < x < b, with y(b)=0. Then the inequality (3) 
holds. Moreover, there is equality only if p=constant, y=B(x-b), 
with B constant. 

 Proof. Define z(x) = -1/p(t) I y'(t) dt (a < x < b). Then 

x y(x) i < - z(x) for a < x < b, so that       i/
p(x) 

     2 bp yy' dx<-2 bzz'dx=z2(a)= b1/p(x) I y'(x) dx 2. 
              a a a 

By Schwarz's inequality (3) follows immediately. There is equality 
only if p = constant, y = B(x - b) with B constant.
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   From Lemma 1 and Lemma 2, follows immediately 
   Theorem 2. Let p(x) be a bounded, positive and monotonic 

function defined on a < x < b, and let y(x) be an absolutely continuous 
function on a < x < b, with y(a)=y(b)=O. Then the inequality (3) 
holds. I f p = constant, then the constant 1/2 can be replaced by 
1/4, and then Opial's inequality (1) is obtained by letting a=0 
and b=h. 

   We shall now prove a generalization of Beesack's theorem. 

I 

   Theorem 3. Let p(x) be positive on a < x < X, with p~1dx < 0 , 

a and let q(x) be bounded, positive and non-increasing on a < x < X; 

y(x) be any function which is absolutely continuous on a < x < X, 
with y(a)=O. Then 

                   g g g 

(4) 2 q I yy' I dx < p-1dx pgy12dx. 
                                a a a 

x 

There is equality only if q = constant, y=A p 1(t)dt or y=0. 
a x 

   Proof. Define z(x)= 1/ q(t) I y'(t) dt. Then z'(x)=Vq(x) y'(x) I 

a for a < x < X. Since q(x) is non-increasing on a < x < X, we have 

    y(x) I < x y'(t) I dt < 1 x~ q(t) I y'(t) dt = z(x)q(x)~"2.          a i/q(x) a 

Hence 
          g g g 2 

     2 q I yy' I dx < 2 zz'dx = z2(X) _ V q(t) I y'(t) dt . 
                 a a a 

By Schwarz's inequality, we get (4). There is equality only if q= 

constant or y=0. 
   Similarly, we have 

b 

   Theorem 3'. Let p(x) be positive on X < x < b, with p-1dx < 00, 

g and let q(x) be bounded, positive and non-decreasing on X < x < b; 

y(x) be any function which is absolutely continuous on X < x < b, 
with y(b)=0. Then 

                       b b b 

(5) 2 q I yy' i dx < p~1dx pgy12dx. 
                   g I I 

Moreover, there is equality only if q=constant or y=0. 
   Theorem 1 is a special case of the combination of Theorem 3 and 

Theorem 3', taking q = constant. 
                                            b b 

   4. On the inequality (m+ n) I ymy'n I dx < n(b _ a)m I y' I m+'dx. 
                                                        a a 

   Lemma 3. Let y(x) be absolutely continuous on a < x < X, with 

y(a)=0. Then 
                 g g 

(6) (n+1) I yny' I dx < (X - a)% I y'(x) In+1dx, n> 1. 
                             a a 

Moreover, equality holds only if y=A(x-a), with A constant.
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x 

   Proof. Define z(x) = ( y'(t) dt. Then y(x) z(x) for a < x < X, 

a and we have 
                   X X g n-f-1 

   (n+ 1) I yny' dx < (n+ 1) znz'dx =z1(X) = ( y'(t) I dt 
                    a a a 

By Holder's inequality, (6) follows immediately. There is equality 
only if y = A(x - a), with A constant. 
   Lemma 4. Let y(x) be an absolutely continuous function on 

a < x < X, with y(b)=0, then 
                        b b 

(7) (n+1) I yny' dx<(b-X) n y' I n+ldx, n>1. 

Moreover, equality holds only i f y = B(x - b). 

b 

   Proof, Define z(x) = - y'(t) dt. Then z'(x) = I y'(x) I for 

x X< x < b, and I y(x) I < -z(x). Hence 
            (b 'b /b \.--I 

 (n+1)\ I yny/ dx < (n + 1) (- z)nz'dx = (- z(X ))n+1- I y' dt , 
         g x x 

By Holder's inequality, (7) follows immediately. 
   Take X = (a + b)/2 in Lemma 3 and Lemma 4, then we have 

   Theorem 4. Let y(x) be an absolutely continuous function on 
a i x < b, with y(a)=y(b)=0. Then 

                        b b 

(8) 21(n+1) yny' dx<(b-a)n I y' n+1d, n1. 
                                  a a 

   We note that Opial's inequality (1) is the special case with n=1, 
a=0, and b=h. 
   Corollarly. Let y(x) be as in Theorem 4, and let P(y) = 

n 

 ay(x)k, with ak > 0, k=1, 2, ... n. Then 
k=1 

(9) b I P(y(x))' dx < 2 b P b-a y' )dx.                    a b--a a 2 

   Example. Let y(x) = x(a -- x), with 0 < a < V 2, and let P(y) = 

  yk(x). Then the relation (9) becomes (x-1)(±!) 2 x< log x in the k=1 2x(x + 1) 
interval (1, oo). 
   Lemma 5. Let y(x) be an absolutely continuous function on 
a < x < X, with y(a)=O, then 

g (10) (n+1) yy'n dx<n(X --a) I y' I'dx, n+n>1, 
                                 a a 

x 

   Proof. Define z(x)= y'(t) Idt. nThen z'(x)= I y'(x) n for 

a a < x < X, and by Holder's inequality 

x  

I y(x) I < I y/(t) I dt<x dt(n-1)Jn x I yI Indt)'<(X_a)1Vn(z(x))11n. 
                                                                           1n

(n-
a a a 

Hence 

         (n+1) yy'n I dx <(n+1) (X-a)(n-1)Jnzllnz'dx 
                               a a 

                  =n(X a)(n`1)~n(z(X ))ln+l)'n.
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By Holder's inequality, (10) follows immediately. 
   Lemma 6. I f y(x) is absolutely continuous on X < x < b, with 

y(b)=0, then 
                      b b 

(11) (n+ 1) I yy'n I dx <n(b-X) I y' n+1CLx, n> 1. 
                  g g 

b 

   Proof, Define z(x) _ - y'(t) n dt. Then z'(x) = I y'(x) I n for 

x X < x < b, and then 

b 

           y(x) I y'(t) I dt<(b-X)(n-1'ln(_z(x))1'n. 

Hence 
                    b b 

       (n+1) yy~n I dx<(n+1) (b--X)(n-1)/n(-z)1/nz'dx 
                g g 

                  =n(b-X)(n-1)/n(_z(X))(n+1)ln . 
Now, 

                              b (n+1)/n b i(n b 
      (-z(X))(n+1)/n- I y' I n dx dx I y' n+1dx 

                        8 g ~ 

b 

                  =(b-X)1/n y'(x) n±1dx. 

X Therefore (11) follows immediately. 
   If we take X=(a+b)/2 in Lemma 5 and Lemma 6, then we 

have the following 

   Theorem 5. I f y(x) is absolutely continuous on a < x < b, with 

y(a)=y(b)=0. Then 

(12) b l yy'n dx< n(b-a') b y'(x) In+1dx n>1.           a 2(n+1)                            a 

We observe that Opial's inequality (1) is a special case obtained 
by taking n=1, a=0, and b=h. 

   In order to generalize Theorems 4 and 5 we prove the following 
lemmas. 
   Lemma 7. If y(x) is absolutely continuous on a<x<X, with 

y(a)=0. Then 
                g g 

(13) (m+n) ymy'n I dx<n(X-a)m I y'(x) I m+ndx, m, n> 1. 
                         a a 

x 

   Proof. Define z(x) = y'(t) ndt. Then z'(x) = y'(x) n for 

a a < x < X, and then 
            x x (n+1)/n x 1/n 

I y(x) I < y'(t) I dt < dt I y'(t) ndt <(X-a)(n-1'ln(z(x))1in. 
                a a a 

Hence 

        (m+n) I ymy'n I dx<(m+n) (X-a)mcn-1)l'z "'z'dx 
                             a a 

                    =n(X-a)m(n-1)/n(z(X))(m+n)/n . 
Thus (13) follows immediately.
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    Lemma 8. I f y(x) is absolutely continuous on X < x < b, with 
y(b)=0. Then 

                    b b 

(14) (m+n) I ymy~n I dx<n(b-X)m I y' I m+r'dx, m, n>1. 
                X g 

b 

   Proof. Define z(x) _ - y'(t) Jdt. nThen z'(x) = I y'(x) I n for X < 

x x < b, and 

b 

            y(x) < y'(t) dt < (b - X) (n--1)/n(_ z(x))'In. 

x Hence 
                    b b 

       (min) Iymy/n dx<(m+n) (b-X)m(n-1)/n(^z)m/nz'dx 
                g g 

                   =n(b_X)m(n-1)/n(_z(X ))(m f n)ln. 
Thus (14) follows immediately. 

   If we take X = (a + b)/2 in Lemma 7 and Lemma 8, we have 
   Theorem 6. I f y(x) is absolutely continuous on a < x < b, with 

y(a)_-y(b)_-O, then 
          b 

ymy~n                 1 dx< n b-a m U yI m{ ndx m n~1.                           -- l         a min 2 a 

   Opial's inequality (1) is a special case that m = n=1, a= 0, and 
b=h. 
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