20. On a Certain Result of Z. Opial

By Gou-Sheng YANG
Department of Mathematics, Tsing Hua University, Taiwan, China (Comm. by Zyoiti Suetuna, m.J.A., Feb. 12, 1966)

1. Introduction. In a recent paper [1], Z. Opial proved the following interesting integral inequality:

Theorem. Let $y(x)$ be of class C^{\prime} on $0 \leqslant x \leqslant h$, and satisfy $y(0)=y(h)=0, y(x)>0$ on $(0, h)$. Then

$$
\begin{equation*}
\int_{0}^{h}\left|y y^{\prime}\right| d x \leqslant \frac{h}{4} \int_{0}^{h} y^{\prime 2} d x . \tag{1}
\end{equation*}
$$

The constant $h / 4$ is best possible.
C. Olech [2] showed that (1) is valid for any function which is absolutely continuous on $[0, h]$, and satisfies the boundary conditions $y(0)=y(h)=0$, and Olech's proof of (1) was much simpler than that of Opial. P. R. Beesack [3] gave an even simpler proof of (1) under the hypotheses of Olech, and he also gave more general inequalities of the same type. Later, many simpler proofs were given by N . Levinson [4], C. L. Mallows [5], and R. N. Pederson [6].

By Mallows' method of the proof of (1) we shall give a simple proof of some results of Beesack [3], and show how this method can be used to yield generalization of Opial's and Beesack's inequalities.
2. On the inequality $2 \int_{a}^{b}\left|y y^{\prime}\right| d x \leqslant K \int_{a}^{b} p y^{\prime 2} d x$.

Let us define $z(x)=\int_{a}^{x}\left|y^{\prime}(t)\right| d t, \quad a \leqslant x \leqslant X$. Then $|y(x)| \leqslant z(x)$ for $a \leqslant x \leqslant X$, and we have

$$
2 \int_{a}^{x}\left|y(x) y^{\prime}(x)\right| d x \leqslant 2 \int_{a}^{x} z z^{\prime} d x=z^{2}(X) .
$$

Now by the definition of $z(x)$ and Schwarz's inequality

$$
z^{2}(X)=\left(\int_{a}^{x}\left|y^{\prime}(x)\right| d x\right)^{2} \leqslant \int_{a}^{x} p^{-1}(x) d x \int_{a}^{x} p y^{\prime 2} d x
$$

There is equality only if $y=A \int_{a}^{x} p^{-1}(t) d t, A$ being a constant. Similarly, define $z(x)=-\int_{x}^{b}\left|y^{\prime}(t)\right| d t, X \leqslant x \leqslant b$. Then $|y(x)| \leqslant-z(x)$ for $X \leqslant x \leqslant b$, and

$$
2 \int_{X}^{b}\left|y y^{\prime}\right| d x \leqslant 2 \int_{X}^{b}-z z^{\prime} d x=z^{2}(X)=\left(-\int_{X}^{b}\left|y^{\prime}\right| d x\right)^{2} \leqslant \int_{X}^{b} p^{-1} d x \int_{X}^{b} p y^{\prime 2} d x
$$

There is equality only if $y=B \int_{x}^{b} p^{-1}(t) d t$, with B constant. Now, we take X such that

$$
\begin{equation*}
K=\int_{a}^{x} p^{-1}(x) d x=\int_{x}^{b} p^{-1}(x) d x \tag{2}
\end{equation*}
$$

then we get
Theorem 1. Let $p(x)$ be a positive and continuous function on a finite or infinite interval $a<x<b$, such that $\int_{a}^{b} p^{-1}(x) d x<\infty$ and let $y(x)$ be an absolutely continuous function on (a, b) with $y(a)=y(b)=0$. Then

$$
2 \int_{a}^{b}\left|y y^{\prime}\right| d x \leqslant K \int_{a}^{b} p y^{\prime 2} d x
$$

where K is defined by (2). Equality holds only if

$$
y(x)=A \int_{a}^{x} p^{-1}(t) d t \quad(a \leqslant x \leqslant X), \quad y(x)=B \int_{x}^{b} p^{-1}(t) d t \quad(X \leqslant x \leqslant b)
$$

Opial's inequality (1) is a special case of Theorem 1 that $a=0$, $b=h$, and $p(x)=1$.
3. On the inequality $2 \int_{a}^{b} q\left|y y^{\prime}\right| d x \leqslant \int_{a}^{b} p^{-1} d x \int_{a}^{b} p q y^{\prime 2} d x$.

Lemma 1. Let $p(x)$ be a bounded, positive and non-increasing function defined on $a \leqslant x \leqslant b$. Let $y(x)$ be absolutely continuous on $a \leqslant x \leqslant b$, with $y(a)=0$. Then

$$
\begin{equation*}
\int_{a}^{b} p\left|y y^{\prime}\right| d x \leqslant \frac{b-a}{2} \int_{a}^{b} p y^{\prime 2} d x . \tag{3}
\end{equation*}
$$

Proof. Define $z(x)=\int_{a}^{x} \frac{1}{\sqrt{p(t)}}\left|y^{\prime}(t)\right| d t(a \leqslant x \leqslant b)$. Then

$$
|y(x)|=\left|\int_{a}^{x} y^{\prime}(t) d t\right| \leqslant \frac{1}{\sqrt{p(x)}} \int_{a}^{x} \sqrt{p(t)}\left|y^{\prime}(t)\right| d t=\frac{z(x)}{\sqrt{p(x)}}
$$

for $a \leqslant x \leqslant b$, so that

$$
2 \int_{a}^{b} p\left|y y^{\prime}\right| d x \leqslant 2 \int_{a}^{b} z z^{\prime} d x=z^{2}(b)=\left(\int_{a}^{b} \sqrt{p(x)}\left|y^{\prime}(x)\right| d x\right)^{2}
$$

By Schwarz's inequality,

$$
\left(\int_{a}^{b} \sqrt{p(x)}\left|y^{\prime}(x)\right| d x\right)^{2} \leqslant \int_{a}^{b} d x \int_{a}^{b} p y^{\prime 2} d x=(b-a) \int_{a}^{b} p y^{\prime 2} d x
$$

There is equality only it $p=$ constant and $y=A x$ with A constant.
Lemma 2. Let $p(x)$ be a bounded, positive and non-decreasing function defined on $a \leqslant x \leqslant b$, and let $y(x)$ be an absolutely continuous function on $a \leqslant x \leqslant b$, with $y(b)=0$. Then the inequality (3) holds. Moreover, there is equality only if $p=$ constant, $y=B(x-b)$, with B constant.

Proof. Define $z(x)=-\int_{x}^{b} \sqrt{p(t)}\left|y^{\prime}(t)\right| d t \quad(a \leqslant x \leqslant b) . \quad$ Then $|y(x)| \leqslant-\frac{z(x)}{\sqrt{p(x)}}$ for $a \leqslant x \leqslant b$, so that

$$
2 \int_{a}^{b} p\left|y y^{\prime}\right| d x \leqslant-2 \int_{a}^{b} z z^{\prime} d x=z^{2}(a)=\left(\int_{a}^{b} \sqrt{p(x)}\left|y^{\prime}(x)\right| d x\right)^{2} .
$$

By Schwarz's inequality (3) follows immediately. There is equality only if $p=$ constant, $y=B(x-b)$ with B constant.

From Lemma 1 and Lemma 2, follows immediately
Theorem 2. Let $p(x)$ be a bounded, positive and monotonic function defined on $a \leqslant x \leqslant b$, and let $y(x)$ be an absolutely continuous function on $a \leqslant x \leqslant b$, with $y(a)=y(b)=0$. Then the inequality (3) holds. If $p=$ constant, then the constant $1 / 2$ can be replaced by $1 / 4$, and then Opial's inequality (1) is obtained by letting $a=0$ and $b=h$.

We shall now prove a generalization of Beesack's theorem.
Theorem 3. Let $p(x)$ be positive on $a \leqslant x \leqslant X$, with $\int_{a}^{x} p^{-1} d x<\infty$, and let $q(x)$ be bounded, positive and non-increasing on $a \leqslant x \leqslant X$; $y(x)$ be any function which is absolutely continuous on $a \leqslant x \leqslant X$, with $y(a)=0$. Then

$$
\begin{equation*}
2 \int_{a}^{x} q\left|y y^{\prime}\right| d x \leqslant \int_{a}^{x} p^{-1} d x \int_{a}^{x} p q y^{\prime 2} d x \tag{4}
\end{equation*}
$$

There is equality only if $q=$ constant, $y=A \int_{a}^{x} p^{-1}(t) d t$ or $y=0$.
Proof. Define $z(x)=\int_{a}^{x} \sqrt{q(t)}\left|y^{\prime}(t)\right| d t$. Then $z^{\prime}(x)=\sqrt{q(x)}\left|y^{\prime}(x)\right|$ for $a \leqslant x \leqslant X$. Since $q(x)$ is non-increasing on $a \leqslant x \leqslant X$, we have

$$
|y(x)| \leqslant \int_{a}^{x}\left|y^{\prime}(t)\right| d t \leqslant \frac{1}{\sqrt{q(x)}} \int_{a}^{x} \sqrt{q(t)}\left|y^{\prime}(t)\right| d t=z(x) q(x)^{-1 / 2}
$$

Hence

$$
2 \int_{a}^{x} q\left|y y^{\prime}\right| d x \leqslant 2 \int_{a}^{x} z z^{\prime} d x=z^{2}(X)=\left(\int_{a}^{x} \sqrt{q(t)}\left|y^{\prime}(t)\right| d t\right)^{2}
$$

By Schwarz's inequality, we get (4). There is equality only if $q=$ constant or $y=0$.

Similarly, we have
Theorem 3'. Let $p(x)$ be positive on $X \leqslant x \leqslant b$, with $\int_{X}^{b} p^{-1} d x<\infty$, and let $q(x)$ be bounded, positive and non-decreasing on $X \leqslant x \leqslant b$; $y(x)$ be any function which is absolutely continuous on $X \leqslant x \leqslant b$, with $y(b)=0$. Then

$$
\begin{equation*}
2 \int_{X}^{b} q\left|y y^{\prime}\right| d x \leqslant \int_{X}^{b} p^{-1} d x \int_{X}^{b} p q y^{\prime 2} d x \tag{5}
\end{equation*}
$$

Moreover, there is equality only if $q=$ constant or $y=0$.
Theorem 1 is a special case of the combination of Theorem 3 and Theorem 3^{\prime}, taking $q=$ constant.
4. On the inequality $(m+n) \int_{a}^{b}\left|y^{m} y^{\prime n}\right| d x \leqslant n(b-a)^{m} \int_{a}^{b}\left|y^{\prime}\right|^{m+n} d x$.

Lemma 3. Let $y(x)$ be absolutely continuous on $a \leqslant x \leqslant X$, with $y(a)=0$. Then

$$
\begin{equation*}
(n+1) \int_{a}^{x}\left|y^{n} y^{\prime}\right| d x \leqslant(X-a)^{n} \int_{a}^{x}\left|y^{\prime}(x)\right|^{n+1} d x, n \geq 1 \tag{6}
\end{equation*}
$$

Moreover, equality holds only if $y=A(x-a)$, with A constant.

Proof. Define $z(x)=\int_{a}^{x}\left|y^{\prime}(t)\right| d t$. Then $|y(x)| \leqslant z(x)$ for $a \leqslant x \leqslant X$, and we have

$$
(n+1) \int_{a}^{x}\left|y^{n} y^{\prime}\right| d x \leqslant(n+1) \int_{a}^{x} z^{n} z^{\prime} d x=z^{n+1}(X)=\left(\int_{a}^{x}\left|y^{\prime}(t)\right| d t\right)^{n+1}
$$

By Hölder's inequality, (6) follows immediately. There is equality only if $y=A(x-a)$, with A constant.

Lemma 4. Let $y(x)$ be an absolutely continuous function on $a \leqslant x \leqslant X$, with $y(b)=0$, then

$$
\begin{equation*}
(n+1) \int_{X}^{b}\left|y^{n} y^{\prime}\right| d x \leqslant(b-X)^{n} \int_{X}^{b}\left|y^{\prime}\right|^{n+1} d x, n \geqslant 1 \tag{7}
\end{equation*}
$$

Moreover, equality holds only if $y=B(x-b)$.
Proof. Define $z(x)=-\int_{x}^{b}\left|y^{\prime}(t)\right| d t$. Then $z^{\prime}(x)=\left|y^{\prime}(x)\right|$ for $X \leqslant x \leqslant b$, and $|y(x)| \leqslant-z(x)$. Hence
$(n+1) \int_{X}^{b}\left|y^{n} y^{\prime}\right| d x \leqslant(n+1) \int_{X}^{b}(-z)^{n} z^{\prime} d x=(-z(X))^{n+1}=\left(\int_{X}^{b}\left|y^{\prime}\right| d t\right)^{n+1}$.
By Hölder's inequality, (7) follows immediately.
Take $X=(a+b) / 2$ in Lemma 3 and Lemma 4, then we have
Theorem 4. Let $y(x)$ be an absolutely continuous function on $a \leqslant x \leqslant b$, with $y(a)=y(b)=0$. Then

$$
\begin{equation*}
2^{n}(n+1) \int_{a}^{b}\left|y^{n} y^{\prime}\right| d x \leqslant(b-\alpha)^{n} \int_{a}^{b}\left|y^{\prime}\right|^{n+1} d x, n \geqslant 1 \tag{8}
\end{equation*}
$$

We note that Opial's inequality (1) is the special case with $n=1$, $a=0$, and $b=h$.

Corollarly. Let $y(x)$ be as in Theorem 4, and let $P(y)=$ $\sum_{k=1}^{n} a_{k} y(x)^{k}$, with $a_{k} \geqslant 0, k=1,2, \cdots n$. Then

$$
\begin{equation*}
\int_{a}^{b}\left|P(y(x))^{\prime}\right| d x \leqslant \frac{2}{b-a} \int_{a}^{b} P\left(\frac{b-a}{2}\left|y^{\prime}\right|\right) d x . \tag{9}
\end{equation*}
$$

Example. Let $y(x)=x(a-x)$, with $0<a<\sqrt{2}$, and let $P(y)=$ $\sum_{k=1}^{\infty} y^{k}(x)$. Then the relation (9) becomes $\frac{(x-1)(2+3 x)}{2 x(x+1)} \leqslant \log x$ in the interval ($1, \infty$).

Lemma 5. Let $y(x)$ be an absolutely continuous function on $\alpha \leqslant x \leqslant X$, with $y(\alpha)=0$, then

$$
\begin{equation*}
(n+1) \int_{a}^{x}\left|y y^{\prime n}\right| d x \leqslant n(X-a) \int_{a}^{x}\left|y^{\prime}\right|^{n+1} d x, \quad n \geqslant 1 \tag{10}
\end{equation*}
$$

Proof. Define $z(x)=\int_{a}^{x}\left|y^{\prime}(t)\right|^{n} d t$. Then $z^{\prime}(x)=\left|y^{\prime}(x)\right|^{n}$ for $a \leqslant x \leqslant X$, and by Hölder's inequality

$$
|y(x)| \leqslant \int_{a}^{x}\left|y^{\prime}(t)\right| d t \leqslant\left(\int_{a}^{x} d t\right)^{(n-1) / n}\left(\int_{a}^{x}\left|y^{\prime}\right|^{n} d t\right)^{1 / n} \leqslant(X-a)^{(n-1) / n}(z(x))^{1 / n}
$$

Hence

$$
\begin{gathered}
(n+1) \int_{a}^{x}\left|y y^{\prime n}\right| d x \leqslant(n+1) \int_{a}^{x}(X-a)^{(n-1) / n} z^{1 / n} z^{\prime} d x \\
=n(X-a)^{(n-1) / n}(z(X))^{(n+1) / n}
\end{gathered}
$$

By Hölder's inequality, (10) follows immediately.
Lemma 6. If $y(x)$ is absolutely continuous on $X \leqslant x \leqslant b$, with $y(b)=0$, then

$$
\begin{equation*}
(n+1) \int_{X}^{b}\left|y y^{\prime n}\right| d x \leqslant n(b-X) \int_{X}^{b}\left|y^{\prime}\right|^{n+1} d x, \quad n \geqslant 1 \tag{11}
\end{equation*}
$$

Proof. Define $z(x)=-\int_{x}^{b}\left|y^{\prime}(t)\right|^{n} d t$. Then $z^{\prime}(x)=\left|y^{\prime}(x)\right|^{n}$ for $X \leqslant x \leqslant b$, and then

$$
|y(x)| \leqslant \int_{x}^{b}\left|y^{\prime}(t)\right| d t \leqslant(b-X)^{(n-1) / n}(-z(x))^{1 / n}
$$

Hence

$$
\begin{gathered}
(n+1) \int_{X}^{b}\left|y y^{\prime n}\right| d x \leqslant(n+1) \int_{X}^{b}(b-X)^{(n-1) / n}(-z)^{1 / n} z^{\prime} d x \\
=n(b-X)^{(n-1) / n}(-z(X))^{(n+1) / n}
\end{gathered}
$$

Now,

$$
\begin{aligned}
(-z(X))^{(n+1) / n} & =\left(\int_{X}^{b}\left|y^{\prime}\right|^{n} d x\right)^{(n+1) / n} \leqslant\left(\int_{X}^{b} d x\right)^{1 / n} \int_{X}^{b}\left|y^{\prime}\right|^{n+1} d x \\
& =(b-X)^{1 / n} \int_{X}^{b}\left|y^{\prime}(x)\right|^{n+1} d x
\end{aligned}
$$

Therefore (11) follows immediately.
If we take $X=(a+b) / 2$ in Lemma 5 and Lemma 6, then we have the following

Theorem 5. If $y(x)$ is absolutely continuous on $a \leqslant x \leqslant b$, with $y(a)=y(b)=0$. Then

$$
\begin{equation*}
\int_{a}^{b}\left|y y^{\prime n}\right| d x \leqslant \frac{n(b-a)}{2(n+1)} \int_{a}^{b}\left|y^{\prime}(x)\right|^{n+1} d x, \quad n \geqslant 1 \tag{12}
\end{equation*}
$$

We observe that Opial's inequality (1) is a special case obtained by taking $n=1, a=0$, and $b=h$.

In order to generalize Theorems 4 and 5 we prove the following lemmas.

Lemma 7. If $y(x)$ is absolutely continuous on $a \leqslant x \leqslant X$, with $y(a)=0$. Then

$$
\begin{equation*}
(m+n) \int_{a}^{x}\left|y^{m} y^{\prime n}\right| d x \leqslant n(X-a)^{m} \int_{a}^{x}\left|y^{\prime}(x)\right|^{m+n} d x, \quad m, n \geqslant 1 \tag{13}
\end{equation*}
$$

Proof. Define $z(x)=\int_{a}^{x}\left|y^{\prime}(t)\right|^{n} d t$. Then $z^{\prime}(x)=\left|y^{\prime}(x)\right|^{n}$ for $a \leqslant x \leqslant X$, and then

$$
|y(x)| \leqslant \int_{a}^{x}\left|y^{\prime}(t)\right| d t \leqslant\left(\int_{a}^{x} d t\right)^{(n+1) / n}\left(\int_{a}^{x}\left|y^{\prime}(t)\right|^{n} d t\right)^{1 / n} \leqslant(X-a)^{(n-1) / n}(z(x))^{1 / n}
$$

Hence

$$
\begin{gathered}
(m+n) \int_{a}^{x}\left|y^{m} y^{\prime n}\right| d x \leqslant(m+n) \int_{a}^{x}(X-a)^{m(n-1) / n} z^{m / n} z^{\prime} d x \\
=n(X-a)^{m(n-1) / n}(z(X))^{(m+n) / n}
\end{gathered}
$$

Thus (13) follows immediately.

Lemma 8. If $y(x)$ is absolutely continuous on $X \leqslant x \leqslant b$, with $y(b)=0$. Then

$$
\begin{equation*}
(m+n) \int_{X}^{b}\left|y^{m} y^{\prime n}\right| d x \leqslant n(b-X)^{m} \int_{X}^{b}\left|y^{\prime}\right|^{m+n} d x, \quad m, n \geqslant 1 . \tag{14}
\end{equation*}
$$

Proof. Define $z(x)=-\int_{x}^{b}\left|y^{\prime}(t)\right|^{n} d t$. Then $z^{\prime}(x)=\left|y^{\prime}(x)\right|^{n}$ for $X \leqslant$ $x \leqslant b$, and

$$
|y(x)| \leqslant \int_{x}^{b}\left|y^{\prime}(t)\right| d t \leqslant(b-X)^{(n-1) / n}(-z(x))^{1 / n}
$$

Hence

$$
\begin{gathered}
(m+n) \int_{X}^{b}\left|y^{m} y^{\prime n}\right| d x \leqslant(m+n) \int_{X}^{b}(b-X)^{m(n-1) / n}(-z)^{m / n} z^{\prime} d x \\
=n(b-X)^{m(n-1) / n}(-z(X))^{(m+n) / n}
\end{gathered}
$$

Thus (14) follows immediately.
If we take $X=(a+b) / 2$ in Lemma 7 and Lemma 8 , we have
Theorem 6. If $y(x)$ is absolutely continuous on $a \leqslant x \leqslant b$, with $y(a)=y(b)=0$, then

$$
\int_{a}^{b}\left|y^{m} y^{\prime n}\right| d x \leqslant \frac{n}{m+n}\left(\frac{b-a}{2}\right)^{m} \int_{a}^{b}\left|y^{\prime}\right|^{m+n} d x, \quad m, n \geqslant 1 .
$$

Opial's inequality (1) is a special case that $m=n=1, a=0$, and $b=h$.

References

[1] Z. Opial: Sur une inégalite. Ann. Polon. Math., 8, 29-32 (1960).
[2] C. Olech: A simple proof of a certain result of Z. Opial. Ann. Polon. Math., 8, 61-63 (1960).
[3] P. R. Beesack: On an integral inequality of Z. Opial. Tran. Amer. Math. Soc., 104, 470-475 (1962).
[4] N. Levinson: On an inequality of Opial and Beesack. Proc. Amer. Math. Soc., 15, 565-566 (1964).
[5] C. L. Mallows: An even simpler proof of Opial's inequality. Proc. Amer. Math. Soc., 16, 173 (1965),
[6] R. N. Pederson: On an inequality of Opial, Beesack, and Levinson. Proc. Amer. Math. Soc., 16, 174 (1965).

